Actions on permutations and unimodality of descent polynomials
نویسنده
چکیده
We study a group action on permutations due to Foata and Strehl and use it to prove that the descent generating polynomial of certain sets of permutations has a nonnegative expansion in the basis {t(1 + t)} i=0 , m = ⌊(n−1)/2⌋. This property implies symmetry and unimodality. We prove that the action is invariant under stack-sorting which strengthens recent unimodality results of Bóna. We prove that the generalized permutation patterns (13 2) and (2 31) are invariant under the action and use this to prove unimodality properties for a q-analog of the Eulerian numbers recently studied by Corteel, Postnikov, Steingŕımsson and Williams. We also extend the action to linear extensions of sign-graded posets to give a new proof of the unimodality of the (P, ω)-Eulerian polynomials of sign-graded posets and a combinatorial interpretations (in terms of Stembridge’s peak polynomials) of the corresponding coefficients when expanded in the above basis. Finally, we prove that the statistic defined as the number of vertices of even height in the unordered decreasing tree of a permutation has the same distribution as the number of descents on any set of permutations invariant under the action. When restricted to the set of stack-sortable permutations we recover a result of Kreweras.
منابع مشابه
Revstack Sort, Zigzag Patterns, Descent Polynomials of $t$-revstack Sortable Permutations, and Steingrímsson's Sorting Conjecture
In this paper we examine the sorting operator T (LnR) = T (R)T (L)n. Applying this operator to a permutation is equivalent to passing the permutation reversed through a stack. We prove theorems that characterise t-revstack sortability in terms of patterns in a permutation that we call zigzag patterns. Using these theorems we characterise those permutations of length n which are sorted by t appl...
متن کاملDescent polynomials for permutations with bounded drop size
Motivated by juggling sequences and bubble sort, we examine permutations on the set {1, 2, . . . , n} with d descents and maximum drop size k. We give explicit formulas for enumerating such permutations for given integers k and d. We also derive the related generating functions and prove unimodality and symmetry of the coefficients. Résumé. Motivés par les “suites de jonglerie” et le tri à bull...
متن کاملKirillov's Unimodality Conjecture for the Rectangular Narayana Polynomials
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillov’s unimodality conjecture. By using an equidistribution property between descent numbers and ascent numbers on ballot paths due to Sulanke and a bijection between...
متن کاملMajor Index over Descent for Pattern-avoiding Permutations
An open conjecture in pattern avoidance theory is that the distribution of the major index among 321-avoiding permutations is distributed unimodally. We construct a formula for this distribution, and in the case of 2 descents prove unimodality, with unimodality for 3 through 5 descents likely being little more complicated. The formula refines the q-analogue of the Frame-Robinson-Thrall hookleng...
متن کاملInversion polynomials for 321-avoiding permutations: addendum
This addendum contains results about the inversion number and major index polynomials for permutations avoiding 321 which did not fit well into the original paper. In particular, we consider symmetry, unimodality, behavior modulo 2, and signed enumeration.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 29 شماره
صفحات -
تاریخ انتشار 2008